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Person Re-Identification by Saliency Learning
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Abstract—Human eyes can recognize person identities based on small salient regions, i.e., person saliency is distinctive and reliable

in pedestrian matching across disjoint camera views. However, such valuable information is often hidden when computing similarities

of pedestrian images with existing approaches. Inspired by our user study result of human perception on person saliency, we propose a

novel perspective for person re-identification based on learning person saliency and matching saliency distribution. The proposed

saliency learning and matching framework consists of four steps: (1) To handle misalignment caused by drastic viewpoint change and

pose variations, we apply adjacency constrained patch matching to build dense correspondence between image pairs. (2) We propose

two alternative methods, i.e., K-Nearest Neighbors and One-class SVM, to estimate a saliency score for each image patch, through

which distinctive features stand out without using identity labels in the training procedure. (3) saliency matching is proposed based on

patch matching. Matching patches with inconsistent saliency brings penalty, and images of the same identity are recognized by

minimizing the saliency matching cost. (4) Furthermore, saliency matching is tightly integrated with patch matching in a unified

structural RankSVM learning framework. The effectiveness of our approach is validated on the four public datasets. Our approach

outperforms the state-of-the-art person re-identification methods on all these datasets.

Index Terms—Person re-identification, person saliency, patch matching, video surveillance

Ç

1 INTRODUCTION

PERSON re-identification [1], [2], [3] is to match pedes-
trians observed from non-overlapping camera views

based on image appearance. It has important applications
in video surveillance such as human retrieval, human track-
ing, and activity analysis. It saves a lot of human efforts on
exhaustively searching for a person from large amounts of
images and videos. Nevertheless, person re-identification is
a very challenging task. A person observed in different
camera views undergoes significant variations on view-
points, poses, and illumination, which make intra-personal
variations even larger than inter-personal variations. Image
blurring, background clutters and occlusions also cause
additional difficulties.

Variations of viewpoints and poses commonly exist in
person re-identification, and cause misalignment between
images. In Fig. 1, the lower right region of ðp1aÞ is a red bag,
while a leg appears in this region in ðp1bÞ; the central region
of ðp3aÞ is an arm, while it becomes a backpack in ðp3bÞ. Most
existingmethods [4], [5], [6], [7], [8] match pedestrian images
by first computing the difference of feature vectors and then
the similarities based on such difference vectors, which is
problematic due to the spatial misalignment. In our work,
patch matching is employed to handle misalignment, and it
is integratedwith saliencymatching to improve the discrimi-
native power and robustness to spatial variation.

Salient regions in pedestrian images provide valuable
information in identification. However, if they are small in
size, saliency information is often overwhelmed by other

features when computing similarities of images. In this
paper, saliency means regions with attributes that 1) make a
person distinctive against potential distractors, and 2) are
reliable in finding the same person across camera views. In
many cases, humans can easily recognize matched pedes-
trian pairs because they have distinct features. For example,
in Fig. 1, person p1 takes a red bag, p2 dresses bright white
skirt, p3 takes a blue bag, and p4 carries a red folder in arm.
These features are discriminative in distinguishing one per-
son from others. Intuitively, if a body part is salient in one
camera view, it usually remains salient in another camera
view. Therefore, saliency also has view invariance.

Salient regions are not limited to body parts (such as
clothes and trousers), but also include accessories (such as
baggage, folders and umbrellas as shown in Fig. 1), which
are often considered as outliers and removed in existing
approaches. Our computation of saliency is based on the
comparison with images from a large scale reference dataset
rather than a small group of persons. Therefore, it is quite
stable in most circumstances.

We observe that images of the same person captured
from different camera views have some invariance property
in vertical direction on their spatial distributions of saliency,
like pair ða1; a2Þ in Fig. 2. Since the person in image ða1Þ
shows saliency in her dress while others ða3Þ-ða6Þ are salient
in blouses, they can be well distinguished simply from
the spatial distributions of saliency. Therefore, not only the
visual features from salient regions are discriminative, the
spatial distributions of person saliency also provide useful
information in person re-identification. Such information
can be encoded into patch matching. If two patches from
two images of the same person are matched, they are
expected to have similar saliency values; otherwise such
matching brings penalty on saliency matching. In the sec-
ond row in Fig. 2, the query image ðb1Þ shows a similar
saliency distribution as those of gallery images. In this case,
visual similarity needs to be considered. This motivates us
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two matched patches.

2 OUR APPROACH

Although saliency plays an important role in person re-
identification, it has not been well explored in literature. In
this paper, a novel framework of person saliency learning and
matching is proposed for person re-identification. Our major
contributions can be summarized from the following aspects.

We propose a way of estimating what is salient to
humans. It is estimated from the number of trials that a
human subject recognizes a query image from a candidate
pool only based on a local region. It shows that most pedes-
trian images can be matched by humans from local salient
regions without looking at whole images. The saliency esti-
mated from user study is compared with the result of our
saliency computation model. Compared with general image
saliency detection methods [9], [10], our proposed saliency
computation has much stronger correlation with human
perception in person re-identification.

A computationmodel is proposed to estimate the probabi-
listic saliency map. Different from general image saliency
detection methods, it is specially designed for person re-
identification, and has the following properties. 1) It is robust
to changes of viewpoints, poses and articulation. 2) Distinct
patches are considered as salient onlywhen they arematched
and distinct in both camera views. 3) person saliency itself is
a useful descriptor for pedestrian matching. For example, a
person only with salient upper body and a person only with
salient lower bodymust be different identities.

We formulate person re-identification as a saliency
matching problem. Dense correspondences between
patches are established by patch matching based on visual
similarity, and matching patches with inconsistent saliency
brings cost. Images of the same person are recognized by
minimizing the saliency matching cost, which depends on
both locations and visual similarity of matched patches.

Saliency matching and patch matching are tightly inte-
grated into a unified structural RankSVM framework. Struc-
tural RankSVM has good training efficiency given a large
number of rank constraints in person re-identification. Our
approach transforms the original high-dimensional visual
feature space to a 80 times lower dimensional saliency fea-
ture space to further improve training efficiency and also
avoid overfitting.

3 RELATED WORKS

Existing works on person re-identification mainly focus on
two aspects: 1) features and representations, and 2) distance
metric. A review can be found in [1].

3.1 Features and Representations

A lot of research efforts [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23] have been devoted to exploit-
ing discriminative features in person re-identification.
Wang et al. [11] proposed shape and appearance context to
model the spatial distributions of appearance relative to
body parts in order to extract discriminative features
robust to misalignment. Farenzena et al. [12] proposed the
Symmetry-Driven Accumulation of Local Features (SDALF)
by exploiting the symmetry property in pedestrian images
to handle view variation. Bak et al. [13], Xu et al. [21] and
Cheng et al. [14], [15] applied human part models and picto-
rial structures to cope with pose variations by establishing
the spatial correspondence. Wei et al. [24] proposed a cas-
cade ranking model to utilize human gait information. Ma
et al. [16], [17], [18] developed the BiCov descriptor based
on the Gabor filters and the covariance descriptor to handle
illumination change and background variation. Zheng
et al. [19], [20] used the contextual visual cues from sur-
rounding people to enrich human signatures. Information
on salient regions exploited in our work can be integrated
with many of these feature designs by putting more weights
on features from salient regions.

Features vary in their usefulness in person matching, and
some works have been done on feature selection and impor-
tance learning. Gray et al. [25] used AdaBoost to select fea-
tures. Schwartz [26] assigned weights to features with
Partial Least Squares (PLS). Liu et al. [27] developed an
unsupervised approach to learn bottom-up feature impor-
tance, and adaptively weight features. Instead of globally
weighting features across all the pedestrian images, our
approach adaptively weights features based on individual
person pairs to be matched, since different persons have dif-
ferent salient regions.

Visual features suffer from a range of variations across
camera views. Feature transforms are learned to improve
the invariance to cross-view transforms. Prosser et al. [28]
learned the Cumulative Brightness Transfer Function to han-
dle color transforms. Avraham et al. [29], [30] learned both
implicit and explicit transforms of visual features. Martinel
et al. [31]modeled the feature transforms by classifying feasi-
ble and infeasible warp functions. Li et al. [32] proposed a
cross-view projective dictionary learning approach to learn
view-invariant features. Rather than learning feature trans-
forms for specific camera view settings, our approach
flexibly handles the cross-view variations by performing a

Fig. 1. Salient region could be a body part or a carrying accessory.
Some salient regions of pedestrians are highlighted with yellow
dashed boundaries.

Fig. 2. Illustration of saliency matching with examples. Saliency map of
each pedestrian image is shown. Best viewed in color.
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constrained patch matching technique, which can be gener-
alize to any disjoint camera-view transition. Recently, a simi-
lar work [33] employed patch matching to handle proposed
partial person re-identification problem.

Some works explored higher level features [34], [35], [36],
[37], [38], [39] to assist person re-identification. Vaquero
et al. [34] first introduced mid-level facial attributes in
human recognition. Layne et al. [35], [36] proposed 15
human attributes for person re-identification. Song
et al. [37] used human attributes to match persons with
Bayesian decision. Shi et al. [40] learned semantic represen-
tation by transferring attribute information from fashion
photography datasets. Li et al. [41] and Ahmed et al. [42]
designed deep convolutional neural networks to learn deep
features. Saliency distribution can also be considered as one
kind of high-level features.

3.2 Rank and Metric Learning

Given a query image, an image of the same person is
expected to have a high rank on the candidate list
after matching. Prosser et al. [4] formulated person re-
identification as a ranking problem, and learned global
feature weights with RankSVM. Wu et al. [43] introduced
rank-loss optimization to improve accuracy in re-identifica-
tion. Loy et al. [44] exploited unlabeled gallery data to propa-
gate labels to query instances with a manifold rankingmodel.
Liu et al. [45] presented a man-in-loop method to allow users
to quickly refine ranking result. In this paper, we employ
structural RankSVM [46], which considers ranking difference.

Many research works [5], [6], [7], [8], [27], [47], [48], [49],
[50], [51] focused on optimizing distance metrics for match-
ing persons. Zheng et al. [5] learned the metric by maximiz-
ing the likelihood of true matches to have a smaller distance
than that of a wrongly matched pair. Dikmen et al. [7] pro-
posed to learn a Mahalanobis distance that is optimal for k-
nearest neighbor classification by using a maximum margin
formulation. Mignon and Jurie [8] learned a joint projection
for dimension reduction, satisfying distance constraints
added by image pairs. Li et al. [50] proposed to learn a deci-
sion function for matching, which jointly models a distance
metric and a locally adaptive thresholding rule. Pedagadi

et al. [51] employed Local Fisher Discriminant Analysis to
learn a distance metric. Zheng et al. [52] proposed a trans-
fered local relative distance comparison model to mine
and transfer information from the open-world non-target
pedestrian images. Liao et al. [53] learned a discriminative
subspace and a distance metric by cross-view quadratic dis-
criminant analysis. The above learned metrics are based on
subtraction of misaligned feature vectors, which causes sig-
nificant information loss and errors. Our approach handles
featuremisalignment through patchmatching.

3.3 Person Saliency versus General Image Saliency

General image saliency has been well studied [10], [54], [55],
[56], [57], [58]. In the context of person re-identification, per-
son saliency is different from general image saliency in the
way of drawing visual attention. With the aim to improve
the performance of re-identification, person saliency is con-
sidered as visual patterns that distinguish a person from
others, while general saliency draws visual attention within
a single image to capture salient foreground objects from
background.

4 METHOD OVERVIEW

The diagram of the proposed saliency learning and match-
ing framework is shown in Fig. 3. Section 5 conducts a user
study to estimate person saliency based on human percep-
tion in the person re-identification task. We investigate the
discriminative power of different body regions in identify-
ing a target person from a gallery set. The saliency of each
local region of a query image is quantitatively estimated by
measuring the averaged number of trials that human label-
ers find the target person only based on that region of the
query image. An illustration is shown in Fig. 3a. The red
and green bounding boxes indicate incorrect and correct
targets chosen by the labeler from the gallery. The red
skirt has higher saliency and causes fewer failure trials
compared with the arm. Our result shows that subjects
can recognize a query person only based on a small
salient part without looking at the whole image. Salient
regions vary on different persons.

Fig. 3. Diagram of our novel framework of person saliency learning and matching for person re-identification.

ZHAO ET AL.: PERSON RE-IDENTIFICATION BY SALIENCY LEARNING 3



IEE
E P

ro
ofAn unsupervised approach for saliency learning is pro-

posed in Section 6 and illustrated in Fig. 3b.With constrained
patchmatching, each patch finds its matched neighbors from
a reference set of training images. K-Nearest Neighbor and
One-Class SVM models are employed to learn a saliency
measure suitable for person re-identification. Our experi-
mental results show both qualitative and quantitative evalu-
ation of the correlation between the learned saliency and
human perception. With obtained person saliency, matching
image pairs can be performed in unsupervised and super-
vised ways as described in Section 6. For the unsupervised
manner, saliency is used to weight patch matching similarity
and penalize inconsistence of saliency distribution across
camera views, as shown by the blue lines in Fig. 3c. For
the supervised manner, person matching is formulated as a
saliency matching problem, which considers four types of
saliency matching cases, as shown in the table in Fig. 3c. The
matching cost is a linear function of patch matching similari-
ties, which is learned with Structural RankSVM. The learned
saliency matching function is used to measure similarities
between images.

5 SALIENCY FROM HUMAN PERCEPTION

We define person saliency in the context of person re-
identification and estimate it by user study.

Given an image, we apply superpixel segmentation [59],
and then manually merge superpixels that are coherent in
appearance. Superpixels with different semantic meanings
are not merged. For example, hair and jacket may share
similar appearance, but they are treated as two parts. Only
foreground superpixels are considered. Note that applying
superpixel segmentation and manual merging are only
for user study. Later in our proposed saliency learning
approach, the saliency region is automatically estimated.

A segmented body part is randomly selected and pre-
sented to a labeler. Labelers are asked to perform part-based
re-identification task. Each part is shown multiple times to
different labelers. The user study results are combined into
a saliency value. In Fig. 4, a body part from a query image is
revealed (on the left) at its original spatial location in the
image while other parts are masked, and a list of 32 images
randomly sampled from the gallery set are also shown (on
the right) to the labeler. The true target (observed in a differ-
ent camera view from the query image) is among the sam-
pled images, but the order is randomly shuffled. In each
trial, the labeler is asked to select the most likely image
from the list based on visual perception. The labeler is
allowed to select for multiple times until the correct match
is found. In Fig. 4, the red bounding boxes indicate wrong
selection and the green one indicates the correct match

found in the end. A part is considered as salient if labelers
try fewer times to found the target.

Denote the ith revealed part by pi. Then the saliency
value of the revealed part is estimated as

scorescoreðpiÞ ¼ exp �m2
pi

s2
avg

 !
exp � s2pi

s2
std

 !
; (1)

mpi and spi are the average and standard deviation of
number of trials over all the labelers. savg and sstd are
bandwidth parameters. For the first term, smaller mean
number of trials indicate the revealed body part is helpful
to find the target person, and should have a higher
saliency score. Larger mean number of trials lead to lower
saliency score. In the second term, a large standard devia-
tion of number of trials means the revealed body part
cannot consistently help users to identify target person.
The larger the standard deviation, smaller the second
term is. Thus, they are combined.

The user study is conducted on 524 body parts of 100
images from camera view A of the VIPeR dataset [60]. Some
examples of the saliency maps obtained by user study are
shown in Fig. 5. In order to investigate whether salient
regions exist in pedestrian images, Fig. 6 left shows the his-
togram on the numbers of trials used to find the targets only
based on the most salient parts on query images. It shows
that more than half of the pedestrians can be recognized, if
the labelers only observe the most salient part of a query
image. As comparison, Fig. 6 right plots the histogram on
the numbers of trials for all the parts. It shows that most
other body parts are not salient enough. The correlation
between the user study saliency and that obtained with the
proposed computation model will be validated in experi-
ments in Section 8.

Fig. 4. Interface of user study to obtain person saliency.

Fig. 5. Examples of saliency obtained from user study. Each body part
obtains a saliency value. Saliency map is overlaid on the gray-level
image. The original color image is on the left.

Fig. 6. Statistics on saliency user study. Left: Histogram on the numbers
of trials used to find the targets only based on the most salient parts on
query images. Right: Histogram on the numbers of trials for all the parts.
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6 PERSON SALIENCY LEARNING

Groundtruth person saliency costs large amount of human
labors, and it usually becomes different in changed camera
settings. Thus, we propose to automatically learn person
saliency in an unsupervised manner. Dense correspondence
between images is first built with patch matching, and two
alternative approaches (K-nearest neighbor and One-Class
SVM) are proposed to estimate person saliency without
using identity labels or user study saliency.

6.1 Feature Extraction

Each image is densely divided into a gridM �N of overlap-
ping local patches, and each patch is represented by a fea-
ture vector concatenating color histograms and SIFT
features computed around its local region.

Dense color histogram. A color histogram in LAB color
space is extracted from each patch. LAB color histograms
are computed on multiple downsampled scales and L2
normalized.

Dense SIFT. To handle viewpoint and illumination
change, SIFT descriptor is used as complementary to color
histograms. We divide each patch into 4� 4 cells, quantize
the orientations of local gradients into 8 bins, and obtain a
4� 4� 8 ¼ 128 dimensional SIFT feature vector, which is
also L2 normalized.

In our experiment, scales of pedestrian images range
from 128 � 48 to 160 � 60. Patches of size 10� 10 pixels are
sampled on a dense grid with a step size 4. 32-bin color his-
tograms are computed in each LAB channels, and in each
channel, three levels of downsampling are used with scaling
factors 0:5, 0:75 and 1. SIFT features are also extracted in
three color channels and thus produces a 128� 3 feature
vector for each patch. In a summary, each patch is finally
represented with a discriminative descriptor vector of
length 32� 3� 3þ 128� 3 ¼ 672. We denote the combined
Color-SIFT feature vector asDenseFeats.

6.2 Dense Correspondence

To deal with misalignment, we build dense correspondence
between images by adjacency constrained search. Dense
Feats features of a pedestrian image is represented as

XA;u ¼ fxA;u
pi

j pi ¼ 1 . . . ;MNg, where ðA; uÞ denotes the uth

image in camera A, pi denotes the position of the patch in

this image, and xA;u
pi

is the dense Color-SIFT feature vector

of the patch. A natural baseline is to compute image similar-
ity with concatenated patch features,

simsimDenseFeatsðXA;u;XB;vÞ ¼
X
pi

sðxA;u
pi

; xB;v
pi

Þ; (2)

where

sðxA;u
pi

; xB;v
pi

Þ ¼ exp � dðxA;u
pi

; xB;v
pi

Þ2
2s2

 !
; (3)

is the similarity between two patch features, dð�Þ is the
Euclidean distance, and s is a bandwidth parameter.

Adjacency searching. simsimDenseFeats does not consider mis-
alignment. We propose adjacency constrained searching to
allow flexible matching among patches in image pairs.
When the patches are matched with those from another

image, patches in the same row have the same search set,
denoted as

SðxA;upi
; XB;vÞ ¼ fxB;vp̂i

j Iyðp̂iÞ ¼ IyðpiÞg; (4)

where IyðpiÞ indicate the row index of position pi.

SðxA;um;n;X
B;vÞ restricts the search set in XB;v within the

IyðpiÞth row. However, bounding boxes produced by a
human detector are not always well aligned, and also
uncontrolled human pose variations exist. We relax the hor-
izontal constraint to have a larger search range:

ŜðxA;upi
; XB;vÞ ¼ fxB;vp̂i

j Iyðp̂iÞ 2 N ðIyðpiÞÞg; (5)

where

NðIyðpiÞÞ ¼
�
max

�
0; IyðpiÞ � l

�
; . . . ;

IyðpiÞ; . . . ;min
�
IyðpiÞ þ l;M

��
;

(6)

and l defines the size of the relaxed adjacent vertical space.
Less relaxed search space cannot well tolerate the spatial
variation while more relaxed search space increases the
chance of matching different body parts. l ¼ 2 is chosen in
our setting.

We perform the nearest neighbor search for each xA;upi
in

its search set ŜðxA;upi
; XB;vÞ inXB;v,

p0i ¼ argmin
p̂i

dðxA;upi
; xB;vp̂i

Þ;

s:t: xB;vp̂i
2 ŜðxA;upi

; XB;vÞ:
(7)

Thus, dense correspondences Pu;v ¼ fðpi; p0iÞg between

patches in image XA;u and XB;v are obtained by the adja-
cency searching. We denote the method of only using patch
matching without saliency information as PatMatch, and
the image similarity is expressed as

simsimPatMatchðXA;u;XB;vÞ ¼
X

ðpi;p0iÞ2Pu;v

sðxA;upi
; xB;v

p0
i
Þ; (8)

where sðxA;upi
; xB;v

p0
i
Þ is defined in Eq. (3).

To estimate person saliency, we randomly sample Nr

images from the training set as a reference set R without

using the identity labels. For each patch xA;upi
, a nearest

neighbor is found in every reference image, and these near-
est neighbors are collected to build a reference patch set

XrefðxA;upi
Þ for each patch,

XrefðxA;upi
Þ ¼ fxB;v

p0
i

j XB;v 2 R; ðpi; p0iÞ 2 Pu;vg: (9)

The reference set uses training images in different
camera because the learned saliency serves for person re-
identification, which is to match pedestrians across different
camera views. Using reference images in different camera
fits such cross-view setting. We use the reference patch set as
opposed to all patches because saliency measures the ability
of a patch to distinguish identities rather than different
patches from the same person. A salient query patch could
have many similar patches in one reference image if the cor-
responding salient region is large, and if all these similar
patches are used in computing saliency in Eq. (10), then this

ZHAO ET AL.: PERSON RE-IDENTIFICATION BY SALIENCY LEARNING 5
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salient query patch will have a low saliency score. So we con-
strain that one reference image can only contribute one patch.

6.3 Unsupervised Saliency Learning

6.3.1 K-Nearest Neighbor (KNN) Saliency

Byers et al. [61] found the KNN distances can be used for
clutter removal. Since person saliency detection shares a
similar goal as abnormality detection, which also measures
how unusual a data sample is. KNN should also be viable
in finding person saliency. By searching for the K-nearest
neighbors of a test patch in the set of matched patches
obtained with dense correspondence, KNN is adapted to
the re-identification problem. The saliency score of the test
patch is computed with the KNN distance.

The distance between xA;u
pi

and its kth nearest neighbor in

XrefðxA;u
pi

Þ is used as the saliency score:

scorescoreknnðxA;u
pi

Þ ¼ dkðXrefðxA;u
pi

ÞÞ; (10)

where dk denotes the distance of the kth nearest neighbor.
Salient patches only find a limited number (k ¼ akNr) of visu-

ally similar neighbors, and then scorescoreknnðxA;p
pi

Þ is expected to

be large. 0 < ak < 1 is a proportion parameter reflecting our
expectation on the statistical distribution of salient patches.

Choosing k. The goal of saliency detection for person re-
identification is to identify parts with unique appearance.
We set ak ¼ 0:5 with an empirical assumption that a patch
is considered to have unique appearance such that more
than half of the people in the reference set do not share simi-
lar patches with it. Nr reference images are randomly sam-
pled from training set in our experiments. Enlarging the
reference dataset will not deteriorate saliency detection,
because saliency is defined in the statistical sense. It is
robust as long as the distribution of the reference dataset
well reflects the test scenario.

6.3.2 One-Class SVM Saliency

One-class SVM [62] has been widely used for outlier detec-
tion. The basic idea is to use a hypersphere to describe data
in the feature space and put most of the data into the hyper-
sphere. It is formulated as an objective function:

min
R2R;�2Rl;c2F

R2 þ 1

vl

X
i

�i;

s:t:kFðxiÞ � ck2 � R2 þ �i; 8i 2 f1; . . . lg : �i � 0;

(11)

where FðxiÞ is the multi-dimensional feature vector of ith
training sample, l is the number of training samples, R and
c are the radius and center of the hypersphere learned by
One-Class SVM, and v 2 ½0; 1� is a trade-off hyperparameter.
The goal is to keep the hypersphere as small as possible and
include most of the training data. It can be solved in a dual
form by QP optimization [63]. The decision function is:

fðxÞ ¼ R2 � kFðxÞ � ck2;
kFðxÞ � ck2 ¼ kðx; xÞ � 2

X
i

aikðxi; xÞ þ
X
i;j

aiajkðxi; xjÞ;

(12)

where ai and aj are the parameters for each constraint in the
dual problem. We use the radius basis function (RBF)

Kðx; yÞ ¼ expf�kx� yk2=2s2g as kernel to deal with high-
dimensional, non-linear, and multi-mode distributions. As
shown in [63], the decision function fðxÞ of kernel One-class
SVM can well capture the density and modality of the fea-
ture distribution. Saliency score is defined in terms of kernel
One-class SVM decision function:

scorescoreocsvmðxA;upi
Þ ¼ dðxA;upi

; x	Þ;
x	 ¼ argmax

x2Xref ðxA;upi
Þ
fðxÞ; (13)

where x	 is the patch with the highest density (we say den-
sity center). Then the ocsvm score is the distance between
the current patch and the density center, and this is reason-
able because it describe how far away from the majority
(density center). Our experiments show very similar results
in person re-identification with both saliency detection
methods. scorescoreocsvm performs slightly better than scorescoreknn in
some circumstances.

The probability of xA;um;n being a salient patch is

pðlA;upi
¼ 1 j xA;upi

Þ ¼ 1� expð�scorescoreoptðxA;upi
Þ2=s2

0Þ; (14)

where opt 2 fknn; ocsvmg. The person saliency learning is
summarized in Algorithm 1.

Algorithm 1. Person saliency learning

Input: image XA;u and a reference image set R ¼ fXB;v;
v ¼ 1; . . . ; Nrg

Output: saliency probability map pðlA;u
pi

¼ 1 j xA;u
pi

Þ
1: for each patch xA;u

pi
2 X do

2: computeXrefðxA;u
pi

Þwith Eq. (9)
3: compute scorescoreoptðxA;u

pi
Þ; opt 2 fknn; ocsvmgwith Eq. (10) or

Eq. (13)
4: compute pðlA;u

pi
¼ 1 j xA;u

pi
Þwith Eq. (14)

5: end for

7 SALIENCY MATCHING

One of our main contributions is to match human images
based on their saliency probability maps. It is based on our
observation that people in different camera views show con-
sistency in saliency probability maps, as shown in Fig. 2.
Since matching is applied to arbitrary image pairs, we omit
the image index in notation for concise clarity, i.e. , change

XA;u to XA, XB;v to XB, xA;um;n to xApi and xB;vi;j to xB
p0
i
. pi is the

patch index in image XA and p0i is the corresponding

matched patch index in imageXB produced by dense corre-
spondence. We denote the dense correspondence between

XA andXB as P ¼ fðpi; p0iÞgi¼1;...;MN .

7.1 Saliency Weighted Matching

A saliency weighted matching scheme is designed to incor-
porate saliency information. We denote this method as
saliency guided dense correspondence (SDC), as illustrated
in Fig. 3c1, and the similarity between two images is com-
puted as

simsimSDCopt ¼
X

ðpi;p0iÞ2P

scorescoreoptðxApiÞ � sðxApi ; xBp0iÞ � scorescoreoptðxBp0
i
Þ

asdc þ jscorescoreoptðxApiÞ � scorescoreoptðxBp0
i
Þj ;

(15)
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where asdc is a parameter representing a base penalty. Intui-
tively, large saliency scores in both matched patches are
expected to enhance the similarity score of matched
patches. In another aspect, images of the same person
would be more likely to have similar saliency distribu-
tions than those of different persons, so the difference in
saliency score can be used as a penalty to the similarity
score. We set asdc ¼ 1 in experiments. The matching
weights are inversely proportional to asdc þ jscorescoreopt
ðxApiÞ � scorescoreoptðxBp0

i
Þj. If saliency scores of a pair of patches

are not consistent, the matching weights will be low. The
weights are manually designed without using identity
information. In next section, we address how the weights
of saliency matching can be learned in a supervised
approach with identity labels.

7.2 Unified Saliency Matching

Previous saliency scores have continuous values, which can
be understood as the probability of a patch being salient or
non-salient. From this point of view, we can regard patch
saliency as binary hidden variables. To formulate the person
re-identification as a saliency matching problem in a proba-
bilistic way, we introduce hidden variables LA ¼ flApi j lApi 2
f0; 1ggpi ; LB ¼ flBpi j lBpi 2 f0; 1ggpi to consider four different

saliency matching cases separately, i.e., salient/salient

(lApi ¼ 1; lB
p0
i
¼ 1), salient/non-salient (lApi ¼ 1; lB

p0
i
¼ 0), non-

salient/salient (lApi ¼ 0; lB
p0
i
¼ 1), and non-sailient/non-salient

(lApi ¼ 0; lB
p0
i
¼ 0). LA; LB do not need to be inferred, and they

are marginalized later in Eq. (18). The saliency matching
score in Eq. (19) can be computed from continuous saliency
probabilities, estimated in Algorithm 1.

If all the saliency labels are known, we can perform per-
son matching by computing the saliency matching score,
and each matching case should contribute to the matching
score fz differently,

fzðXA;XB; LA; LB;P;ZÞ ¼X
ðpi;p0iÞ2P

n
zpi;1l

A
pi
lBp0

i
þ zpi;2l

A
pi
ð1� lBp0

i
Þ

þ zpi;3ð1� lApiÞlBp0i þ zpi;4ð1� lApiÞð1� lBp0
i
Þ
o
;

(16)

where Z ¼ fzpi;kgi¼1;...;MN; k¼1;2;3;4 are the matching scores
for four different saliency matching results. For example,
if a salient patch is matched with a non-salient patch, its
contribution could be negative. zpi;k is not a constant for

all the patch pairs. Instead, it is modeled as a linear
function of visual similarity of patch pairs. It depends
on the spatial location pi. For example, the score of
matching patches on the background should be different
than those on legs. zpi;k also depends on the visual

similarity between patches xApi and patch xB
p0
i
. Instead of

directly using the Euclidean distance dðxApi ; xBp0iÞ, we

convert it to similarity as in Eq. (3) to reduce the side
effect in summation of very large distances in incorrect
matching, caused by misalignment, occlusion, or back-
ground clutters.

Therefore, we define the matching score zpi;k as a linear
function of the similarity as follows:

zpi;k ¼ api;k � sðxApi ; xBp0iÞ þ bpi;k
: (17)

Thus Eq. (16) considers both saliency matching and visual
similarity. Note that zpi;k are not parameters. api;k and bpi;k

are weighting parameters, which are independent on image
pairs. Once learned, api;k and bpi;k

are used in testing for any

pairs without re-learning.
Since the saliency labels lApi and lB

p0
i
in Eq. (16) are hidden

variables, they can be marginalized by computing the
expectation of the saliency matching score as

f	ðXA;XB;P;ZÞ
¼
X

LA;LB

fzðXA;XB; LA; LB;P;ZÞpðLA; LBjXA;XBÞ

¼
X

ðpi;p0iÞ2P

X4
k¼1

h
api;k � sðxApi ; xBp0iÞ þ bpi;k

i
cpi;kðxApi ; xBp0iÞ; (18)

where parameters api;k weight both visual similarities

sðxApi ; xBp0iÞ and saliency similarities cpi;kðxApi ; xBp0iÞ, parameters

bpi;k weight only saliency similarities. Besides visual

similarity, saliency similarity itself is also useful in re-
identification. For example, even if visual similarity is low

(i.e., sðxApi ; xBp0iÞ 
 0), but matched patches are salient. Then

bpi;k � cpi;kðxApi ; xBp0iÞ is large and provides evidence of the

same identitiy. That is why Fig. 2 and the fifth paragraph
of Section 1 show that even without considering visual
similarity, the spatial distribution of saliency itself has

some power on matching identity. cpi;kðxApi ; xBp0iÞ depends

on saliency probabilities P ðlApi ¼ 1 j xApiÞ and P ðlB
p0
i
¼ 1 j xB

p0
i
Þ

given in Eq. (14),

cpi;kðxApi ; xBp0iÞ

¼

pðlApi ¼ 1 j xApiÞ � pðlBp0i ¼ 1 j xB
p0
i
Þ; k ¼ 1;

pðlApi ¼ 1 j xApiÞ � pðlBp0i ¼ 0 j xB
p0
i
Þ; k ¼ 2;

pðlApi ¼ 0 j xApiÞ � pðlBp0i ¼ 1 j xB
p0
i
Þ; k ¼ 3;

pðlApi ¼ 0 j xApiÞ � pðlBp0i ¼ 0 j xB
p0
i
Þ; k ¼ 4:

8>>>>>><
>>>>>>:

(19)

To better formulate this learning problem, we extract out all
the weighting parameters in Eq. (18) asw, and have

f	ðXA;XB;P;ZÞ ¼ wTFðXA;XB;P Þ
¼

X
ðpi;p0iÞ2P

wT
pi
fðxApi ; xBp0iÞ;

(20)

where

FðXA;XB;P Þ ¼ ½fðxAp1 ; xBp01Þ
T; . . . ;fðxApMN

; xBp0
MN

ÞT�T;

w ¼ ½wp1 ; . . . ;wpMN
�T;

wpi ¼ ½fapi;kgk¼1;2;3;4; fbpi;k
gk¼1;2;3;4�:

(21)

ZHAO ET AL.: PERSON RE-IDENTIFICATION BY SALIENCY LEARNING 7
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FðXA;XB;P Þ is the feature map describing the matching

betweenXA andXB. For each patch pi, the matching feature

fðxApi ; xBp0iÞ is an eight dimensional vector:

fðxApi ; xBp0iÞ ¼
sðxApi ; xBp0iÞ � pðl

A
pi
¼ 1 j xApiÞ � pðlBp0i ¼ 1 j xB

p0
i
Þ

sðxApi ; xBp0iÞ � pðl
A
pi
¼ 1 j xApiÞ � pðlBp0i ¼ 0 j xB

p0
i
Þ

sðxApi ; xBp0iÞ � pðl
A
pi
¼ 0 j xApiÞ � pðlBp0i ¼ 1 j xB

p0
i
Þ

sðxApi ; xBp0iÞ � pðl
A
pi
¼ 0 j xApiÞ � pðlBp0i ¼ 0 j xB

p0
i
Þ

pðlApi ¼ 1 j xApiÞ � pðlBp0i ¼ 1 j xB
p0
i
Þ

pðlApi ¼ 1 j xApiÞ � pðlBp0i ¼ 0 j xB
p0
i
Þ

pðlApi ¼ 0 j xApiÞ � pðlBp0i ¼ 1 j xB
p0
i
Þ

pðlApi ¼ 0 j xApiÞ � pðlBp0i ¼ 0 j xB
p0
i
Þ

2
66666666666666666664

3
77777777777777777775

:
(22)

As shown in Eq. (22), the pairwise feature map

FðXA;XB;P Þ combines the saliency probability map with
appearance matching similarities. There are three advan-
tages of matching with person saliency : (1) the person
saliency probability distribution is more invariant than
other features in different camera views; (2) because the
saliency probability map is built based on dense correspon-
dence, it inherits the property of tolerating spatial variation;
and (3) it can be weighted by visual similarity to improve
the performance of person re-identification. We will present
the details in following sections by formulating the person

re-identification problem with FðXA;XB;P Þ in the struc-
tural RankSVM framework.

7.3 Ranking by Partial Order

We cast person re-identification as a ranking problem for
supervised training. The ranking problem will be solved
by finding an optimal partial order, mathematically defined
in Eq. (23), (24), (27). Given a dataset of pedestrian images,

DA ¼ fXA;u; idA;ugUu¼1 from camera view A and DB ¼
fXB;v; idB;vgVv¼1 from camera view B, where XA;u is the u-th

image, idA;u is its identity label, and U is the total number of

images in DA. Similar notations apply for variables of cam-

era view B. Each image XA;u has its relevant images (same
identity) and irrelevant images (different identities) in data-

set DB. Our goal is to learn the weight parameters w that
order relevant gallery images before irrelevant ones. For the

image XA;u, we rank the relevant images before irrelevant
ones, but no information of the orders within relevant

images or irrelevant ones is provided. The partial order yA;u

is denoted as,

yA;u ¼ fyA;u
v;v0 g; yA;u

v;v0 ¼ þ1 XB;v � XB;v0 ;
�1 XB;v � XB;v0 ;

�
(23)

where XB;v � XB;v0 (XB;v � XB;v0 ) represents that XB;v is

ranked before (after)XB;v0 in partial order yA;u.
The partial order feature [64], [65] is appropriate for our

goal and can encode the difference between relevant pairs

and irrelevant pairs with only partial orders. The partial
order feature for imageXA;u is formulated as,

CpoðXA;u; yA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ

¼
XX
XB;v2Sþ

XA;u

XB;v0 2S�
XA;u

yA;u
v;v0

FðXA;u;XB;v;Pu;vÞ �FðXA;u;XB;v0 ;Pu;v0 Þ
jSþ

XA;u j � jS�
XA;u j

;

(24)

Sþ
XA;u ¼ fXB;v j idB;v ¼ idA;ug; (25)

S�
XA;u ¼ fXB;v j idB;v 6¼ idA;ug; (26)

where fPu;vgVv¼1 are the dense correspondences between

image XA;u and every gallery image XB;v, Sþ
XA;u is relevant

image set of XA;u, S�
XA;u is irrelevant image set, FðXA;u;

XB;v;Pu;vÞ is the feature map defined in Eq. (21), and the dif-

ference vector of two feature maps FðXA;u;XB;v;Pu;vÞ�
FðXA;u;XB;v0 ;Pu;v0 Þ is added if XB;v � XB;v0 or subtracted
otherwise.

A partial order may correspond to multiple rankings.
Our task is to find a good ranking satisfying the optimal
partial order yA;u

	 that maximizes the following score
function,

yA;u
	 ¼ argmax

yA;u2YA;u

wTCpoðXA;u; yA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ;

(27)

where YA;u is the space consisting of all the possible partial
orders. As discussed in [64], [66], good ranking can be

obtained by sorting gallery images by fwTFðXA;u;XB;v;
Pu;vÞgv in a descending order. The remaining problem is
how to learn w. With an optimized w	, we denote the uni-
fied saliency matching similarity as

simsimSalMatchoptðXA;XBÞ ¼ wT
	 FðXA;XB;P Þ; (28)

where opt 2 fknn; ocsvmg.

7.4 Structural RankSVM Training

We employ structural SVM to learn the weighting
parameters w. Different than many previous SVM-based
approaches [4], [67] doing optimization over pairwise
differences, structural SVM optimizes over ranking dif-
ferences and can incorporate non-linear multivariate loss
functions into global optimization in SVM training.

Objective function. Our goal is to learn a linear model and
the training is based on n-slack structural SVM [46]. The
objective function is as follows:

min
w;�

1

2
kwk2 þ C

XU
u¼1

�u;

s:t: wTdCpoðXA;u; yA;u; ŷA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ
� DðyA;u; ŷA;uÞ � �u;

8ŷA;u 2 YA;uyA;u; �u � 0; for u ¼ 1; . . . ; U;

(29)
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dCpoðXA;u; yA;u; ŷA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ
¼ CpoðXA;u; yA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ

�CpoðXA;u; ŷA;u; fXB;vgVv¼1; fPu;vgVv¼1Þ;
(30)

w is the weight vector, C is a parameter to balance between

margin and training error, yA;u is a correct partial order that

ranks all correct matches before incorrect matches, and ŷA;u

is an incorrect partial order that violates some of the pair-
wise relations, e.g. , a correct match is ranked after an incor-

rect match in ŷA;u. The constraints in Eq. (29) force the

discriminant score of correct partial order yA;u to be larger

than that of incorrect one ŷA;u by a margin, which is deter-

mined by a loss function DðyA;u; ŷA;uÞ and a slack variable �u.
AUC loss function. Many loss functions can be applied in

structural SVM. In person re-identification, we choose the
ROC Area loss, which is also known as Area Under
Curve (AUC) loss. It is computed from the number of
swapped pairs,

Nswap ¼ fðv; v0Þ : XB;v � XB;v0 and

wTFðXA;u; XB;v;Pu;vÞ < wTFðXA;u; XB;v0 ;Pu;v0 Þg;
(31)

i.e., the number of pairs of samples that are not ranked in a
correct order. In the case of partial order ranking, the loss
function is

DðyA;u; ŷA;uÞ ¼ jNswapj=jSþ
XA;u j � jS�

XA;u j;
¼
X
v;v0

ð1� ŷA;u
v;v0 Þ=ð2 � jSþ

XA;u j � jS�
XA;u jÞ; (32)

which is a non-linear, and multivariate function. We note
that there are an exponential number of constraints in
Eq. (29) due to the huge dimensionality of YA;u. Joachims
et al. [46] showed that the problem could be efficiently solved
by a cutting plane algorithm. In our problem, the discrimina-
tive model is learned by the structural RankSVM algorithm,
and the weight vectorw in our model means how important
it is for each term in Eq. (22). In Eq. (22), fapi;kgk¼1;2;3;4 corre-

spond to the first four terms based on saliency matching
with visual similarity, and fbpi;k

gk¼1;2;3;4 correspond to the

last four terms only depending on saliencymatching.
We visualize the learning result of w in Fig. 7, and find

that the first four terms in Eq. (22) are heavily weighted in

the central part of human body which implies the impor-
tance of saliency matching based on visual similarity.
fbpi;k

gk¼1;2 are not relevant to visual similarity and they cor-

respond to the two cases when lApi ¼ 1, i.e., the patches on

the query images are salient. It is observed that their weight-
ing maps are highlighted on the upper body, which matches
to our observation that salient patches usually appear on the
upper body. fbpi;k

gk¼3;4 are not relevant to visual similarity

either, but they correspond to the cases when lApi ¼ 0, i.e.,

the patches on the query images are not salient. We
find that their weights are very low on the whole maps. It
means that non-salient patches on query images have little
effect on person re-identification if the contribution of visual
similarity is not considered.

7.5 Combination with Existing Approaches

Our approach is complementary to existing approaches. In
order to combine existing approaches with the matching
score in Eq. (20), the distance between two images can be
computed as follows:

distdisteSalMatchoptðXA;XBÞ ¼
X
i

mi � distdistiðXA;XBÞ

�mSal � simsimSalMatchoptðXA;XBÞ;
(33)

where mið> 0Þ is the weight for the ith similarity measure,
mSalð> 0Þ the weight for unified saliency matching similar-
ity. distdisti corresponds to the dissimilarity measures using
wHSV and MSCR in [12] or LADF [50]. In the experiment,
fmig are chosen the same as in [12], [50]. mSal is fixed as 1.
The testing procedures are summarized in Algorithm 2.

Algorithm 2. Testing procedures of our approach

Input: probe images fXA;ugu, gallery images fXB;vgv, and
learned structural SVM weightsw	.

Output: matching similarities simsimðXA;u;XB;vÞ or distances

distdistðXA;u;XB;vÞ
1: extract feature for each local patch in an image, as described

in Section 6.1.
2: build dense correspondences by adjacency searchwith Eq. (7).
3: compute saliency probability for each patch pðlA;u

pi
¼ 1 j xA;u

pi
Þ

and pðlB;v
pi

¼ 1 j xB;v
pi

Þ following the Algorithm 1.

4: compute matching similarities/distances with one of compo-
nents in our approach, including Eq. (2), Eq. (8), Eq. (15),
Eq. (28), or Eq. (33).

8 EXPERIMENTAL RESULTS

We evaluated our approach on four public datasets, i.e.,
VIPeR [60], CUHK01 [6], i-LIDS [19], and 3DPeS[68]. All
these public datasets are very challenging datasets for per-
son re-identification because they contain significant varia-
tions on viewpoints, poses, and illuminations, and their
images are with occlusions and background clutters. Quali-
tative results of saliency learning were shown, and quantita-
tive results were reported in standard Cumulated Matching
Characteristics (CMC) curves [11].

8.1 Evaluation Protocol

Our experiments followed the evaluation protocol in [25]
for the VIPeR and CUHK01 datasets, and the protocol in [5]

Fig. 7. We take the absolute value of the learned weight vector w,
and reshape it to a 2-dimensional importance map for different spatial
locations. Eight importance maps correspond to fapi;kgk¼1;2;3;4 and

fbpi;kgk¼1;2;3;4 in Eq. (18).

ZHAO ET AL.: PERSON RE-IDENTIFICATION BY SALIENCY LEARNING 9
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the dataset into two even parts, 50 percent for training
(donoted by Dtrn) and 50 percent for testing (denoted by
Dtst). Images from one view were used as probe and those
from another view as gallery. Each probe image was
matched with every image in gallery, and the rank of correct
matchwas obtained.We computed the expectation of correct
match at rank k as rank-k matching rate, and the cumulated
values of matching rate at all ranks was recorded as one-trial
CMC result. 10 trials of evaluation were conducted to
achieve stable statistics, and the expectationwas reported.

For training the structural SVM, all images with identity
labels in Dtrn were used. For person saliency learning, 100
images in both camera views were randomly sampled from
Dtrn as our reference set. In fact, there was overlap in image
data for training the structural SVM and person saliency
learning, because both tasks aimed to learn statistics of the
testing camera view setting, and Dtrn was a good training
set to approximate the testing data. Only 100 images from
Dtrn were used in person saliency learning to reduce the
computational cost in saliency estimation, and our experi-
mental results showed the reference set is large enough to
obtain good estimation.

8.2 Evaluation on Saliency Learning

We investigated the correlation between the person saliency
estimated from human perception through user study
and that automatically estimated by computation models.
The computation models included those design for general
image saliency (such as Itti [54] and Hou [55]) and our KNN
and One-Class SVM (OCSVM) models specially desgined
for person saliency. We computed the mean saliency score
of each body part, and the Pearson correlation between
the automatically estimated saliency and estimation from
human perception. Results were shown , the scatter map in
Fig. 8a showed our learned saliency (KNN and OCSVM)
had high positive correlations with human perception over
the 100 images in user study, while general image saliency
(Itti and Hou) exhibited slight negative correlations. Fig. 8b
showed averaged correlations. Some compared examples
were shown in Fig. 9. The approaches for general image
saliency detection could separate body parts from back-
ground. However, the identified body parts might not be
effective on recognizing identities.

More interesting results of saliency estimation were
shown in Fig. 10a, 10b both on the VIPeR dataset and the

CUHK01 dataset. Qualitative results showed our saliency
learning approach could well approximate human per-
ception and captured important salient regions on human
body.

We also quantitatively compared the effectiveness of the
saliency estimated from user study and our computation
models in person re-identification. We regarded the 100
images (of 100 different persons) with saliency estimated
from user study as the probe set for evaluation, and images
of the corresponding identities in another camera view
were included as the gallery set. Saliency weighted match-
ing was adopted in testing competing saliency estimation
methods, including general image saliency (Itti and Hou),
our learned person saliency (SDC knn and SDC ocsvm),
and saliency estimated from user study (SDC gt). CMCs
were reported in Fig. 12a. Results showed that the our
learned person saliency could well approximate the saliency
estimated from user study in person re-identification,
while general image saliency significantly degraded the re-
identification performance.

Fig. 8. Correlation between automatically estimated saliency by different
approaches (Itti [54], Hou [55], our KNN model and our One-Class SVM
(OCSVM) model) and estimation from human perception. (a) Scatter
plot of correlations over 100 images. (b) Average correlations.

Fig. 9. Examples of estimated saliency map (only body parts are shown).
(a) Groundtruth saliency for all parts are shown in column ðaÞ. Many
parts have low saliency scores (in blue color), but a person may have
multiple salient parts, e.g., in column ðaÞ at bottom right. (b) Pedestrian
images. (c) and (d) are general image saliency estimated by Itti [54]
and Hou [55]. (e) and (f) are person saliency estimated by KNN and
OCSVM. Number on top of each saliency map indicates the correlation
with person saliency estimated from user study.

Fig. 10. Examples of saliency matching in our experiments. It shows four
types of saliency distributions: saliency in upper body (in blue dashed
box), saliency of taking bags (in green dashed box), saliency of lower
body (in orange dashed box), and saliency of stripes on human body
(in red dashed box). Best viewed in color.
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8.3 Component-Wise Evaluation

The effectiveness of different components in our framework
was evaluated. Different settings of component combination
were described in Table 1 and their results were shown in
Figs. 13a and 14a. DenseFeats in Eq. (2) performed the worst
since it directly matched misaligned patches. PatMatch in
Eq. (8) performed better by handling misalignment.
SDC_knn (SDC_ocsvm) in Eq. (15) improved the
performance by incorporating the estimated KNN (One-
class SVM) saliency in patch matching. SalMatch_knn
(SalMatch_ocsvm) in Eq. (28) formulated person re-
identification as saliency matching, and learned matching
weights in a supervised way. If we replaced the KNN
saliency in SalMatch_knn by a fixed saliency map obtained
by averaging all the pedestrian silhouettes, denoted by
SalMatch_fix in Table 1 of revised version, we found it had
worse matching rates than PatMatch, which did not utilize
saliency information at all, i.e., 19:21 versus 20:76 percent at
rank 1, and 37:5 versus 41:77 percent at rank 5. The
reason could be that due to pose variation, some patches
from human body might be outside of the averaged
silhouettes template and their matching scores were
weighted improperly. We combined our approach with
other methods, including SDALF, LADF, and XQDA, and
found it was complementary to each of these methods, as
shown in Fig. 11. eSalMatch_knn_1 (eSalMatch_ocsvm_1) in
Eq. (33) ensembled SDALF feature matching scores in
SalMatch_knn (SalMatch_ocsvm) matching scores, and

eSalMatch_knn_2 (eSalMatch_ocsvm_2) ensembled LADF
similarity measures. By combining with either of the two
methods, the fusion methods outperformed each compo-
nent, showing that our approach was complementary to
other methods. One-class SVM saliency achieved slightly
better than its counterpart settings using KNN saliency.

8.4 Comparison with the State-of-the-Art

Fig. 13b showed significant improvement of SDC (unsuper-
vised) comparing with existing unsupervised methods, i.e.,
SDALF [12], CPS [14], eBiCov [16], eLDFV [17], and Comb
[69] in the VIPeR dataset. For the CUHK01 dataset, we
included the DenseFeats, SDALF, and Comb in compari-
son, as shown in Fig. 14b. In the evaluation of Comb, we
used automatically extracted silhouettes. Specifically, we
applied human pose estimator to find human skeleton, and
used a Gaussian kernel to depict the silhouette. Among the
methods in comparison, the methods denoted with
“method-DF” were implemented with the source code pro-
vided by authors and using our features. Histogram equali-
zation was applied to these methods. For other methods,
their published results on public datasets were directly
used for comparison.

Fig. 13c compared our supervised saliency matching
(SalMatch and eSalMatch) with several alternative super-
vised methods, including seven benchmarking distance
metric learning methods, i.e., PRDC [5], LMNN-R [7],
KISSME [49], LADF [50], PCCA [8], WFS [31], XQDA [53],
attribute-based PRDC (aPRDC) [27] and LF [51], a boosting
approach (ELF) [25], an ensemble of RankSVM (PRSVM)
[4], and a sparse ranking method (ISR) [70]. Also we com-
pared with KISSME and LFDA using our DenseFeats as
baselines, which were denoted by KISSME-DF and LFDA-
DF. Our approach outperformed all these methods. They
ignored the domain knowledge on spatial variation caused
by misalignment and poses as mentioned in Section 3.

TABLE 1
Description of All the Test Settings in Components Evaluation

Denotation Description of component combination in test

DenseFeats Matching with concatenated patch features
PatMatch Use patch matching to handle misalignment
SDC knn Saliency weighted matching (KNN saliency)
SalMatch fix Unified saliency matching (averaged silhouette

as saliency)
SalMatch knn Unified saliency matching (KNN saliency)
eSalMatch knn 1 Combine SalMatch_knn with SDALF [12]
eSalMatch knn 2 Combine SalMatch_knn with LADF [50]
eSalMatch knn 3 Combine SalMatch_knn with XQDA [53]
SDC ocsvm Saliency weighted matching (OCSVM saliency)
SalMatch ocsvm Unified saliency matching (OCSVM saliency)
eSalMatch ocsvm 1 Combine SalMatch_ocsvm with SDALF[12]
eSalMatch ocsvm 2 Combine SalMatch_ocsvm with LADF[50]

Refer to evaluation results in Figs. 13a and 14a.

Fig. 11. CMC curves of different ensemble approaches on the VIPeR
dataset combining our approach SalMatch knn with (a) SDALF, (b)
LADF, and (c) XQDA.

Fig. 12. (a) CMC curves of saliency weighted matching (denoted by SDC) using different saliency on the VIPeR dataset; (b) CMC curves of com-
pared methods on the i-LIDS dataset; (c) CMC curves of compared methods on the 3DPeS dataset.
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unique and inherent appearance, it weighted different types
global features instead of local patches. Its Rank-1 accuracy
was only half of ours. ELF had a low performance since it
selected features in the original feature space in which fea-
tures of different classes were highly correlated. RankSVM
was similar to our method in formulating person re-identifi-
cation as ranking problem. Combined approach eSalMatch
was not evaluated in CUHK01 dataset because the weights
mi in Eq. (33) were not carefully tuned for this dataset in
SDALF method, and features of this dataset were not avail-
able in combining method LADF [50]. Compared with clas-
sical metric learning methods (CCA, LMNN, ITML,
KISSME, and LFDA) based on our DenseFeats features in
CUHK01 dataset, our approach also had generally superior
performance, as shown in Fig. 14c.

Also, as shown in Fig. 12b our approach outperformed
other approaches at rank-1 matching rate on the i-LIDS
dataset, but did not obtain best performance after rank 5.
This was mainly because that images in the i-LIDS dataset
present frequent occlusion in lower body (people taking
suitcases), and there was no module in our approach han-
dling heavy occlusions. On the 3DPeS dataset, all images
had very clean background, and the main problem was the
lighting variations. Histogram equalization could mostly
handle the main problem, and our approach outperformed
other methods by a large margin on this dataset in Fig. 12c.

In general, our approach had much better performance
because we adopted the discriminative saliency matching
strategy for pairwise matching, and the structural RankSVM
incorporated ranking loss in global optimization. This

implied the importance of exploiting person saliency match-
ing and its effectiveness in training structural RankSVM.

9 DISCUSSION

When salient region does not exist in image. If pedestrian
images have no salient regions (e.g. , many pedestrians
wear similar uniforms), our saliency matching approach
degenerates to be patch matching in Eq. (8), which only
depends on visual similarity. However, it will not hurt the
performance. Our approach may also encounter difficulty
when saliency regions are occluded by other pedestrians or
self-occluded due to viewpoint change.

Salient / Non-salient Matching. The saliency label indicates
whether a patch is salient or not. Although, saliency is
expected to be invariant across camera views, such invari-
ance is not absolute. A salient patch may become non-
salient in the other camera view because of the change of
lighting, viewpoint and pose change. There is no clear
boundary between salient and non-salient patches. In our
approach, patch matching always finds a nearest neighbor
for each query patch based on visual similarity from
another image, even if they have different saliency or these
two images belong to different persons. Therefore, a
salient/non-salient match could provide evidence that
two images belonging to different identities. zpi;2 and
zpi;3 could be negative values. Fig. 7 visualizes the abso-

lute values of api;k;bpi;k
. The Appendix shows that

bpi;2 ¼ �bpi;1, and bpi;3
¼ �bpi;4

. So Eq. (16) allows a salient

patch to be matched with a non-salient patch. Since the
reliability of such match is lower, or it indicates different

Fig. 13. CMC curves on the VIPeR dataset. (a) Component-wise evaluation; (b) Comparison of unsupervised approaches; (c) Comparison of
supervised approaches.

Fig. 14. CMC curves on the CUHK01 dataset. (a) Component-wise evaluation; (b) Comparison of unsupervised approaches; (c) Comparison of
supervised approaches.
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persons, zpi;2 and zpi;3 are expected to have lower values

or even being negative.
Extension to Multi-shot Setting. In testing, our method can

be applied to multi-shot setting, since the match score com-
puted with our method can be easily applied to any multi-
shot setting. Our training stage can also be naturally applied
to multi-shot setting.

Evaluation on Auto-detected Pedestrian Images. In [41],
when our approach is evaluated on the CUHK03 dataset
with pedestrian images automatically detected by DPM,
and the performance only drops 1:08 percent at rank-1
matching rate compared to the result evaluated on manu-
ally cropped pedestrian images.

10 CONCLUSION AND FUTURE WORK

We propose a novel person saliency learning and matching
framework for person re-identification. Adjacency con-
strained patch matching is applied to build dense corre-
spondence between image pairs to handle misalignment
caused by drastic viewpoint change and pose variations.
Then K-Nearest Neighbor and One-class SVM approaches
are proposed to estimate saliency score for each image patch
without using identity labels. User study shows that the
automatically estimated person saliency has good correla-
tion with human perception. It is more effective than gen-
eral image saliency in person re-identification. The
estimated saliency can be incorporated into patch matching
in both the saliency weighted matching scheme and the uni-
fied saliency matching framework, and images of the same
identity can be recognized by maximizing the saliency
matching score. Learning the weights in unified saliency
matching framework is formulated as solving a structural
RankSVM problem. Experimental results valid the effective-
ness of our approach and show superior performances on
both the VIPeR and CUHK01 datasets.

The proposed framework can be extended by being inte-
grated with other person re-identification approaches. For
example, DenseFeats used in this work can be replaced by
other more advanced descriptors of characterizing local
patches. Patch matching in our framework can be replaced
by more sophisticated feature matching techniques [71].
Since saliency information is complementary to appearance,
our saliency matching result can be combined with the
matching results of existing approaches to boost their per-
formance as shown in Section 7.5.

APPENDIX

The learned weights by Structural RankSVM. Here we explain
why the learned weights by structural RankSVM are identi-
cal in bpi;1

and bpi;2
, as shown in in Fig. 7. The structural

SVM learning is based on the partial order feature in
Eq. (24), We find the numerator in Eq. (24) further depends
on the subtraction between saliency matching features

DfðxA;u
pi

; xB;v
p0
i
; xB;v0

p00
i
Þ ¼ fðxA;u

pi
; xB;v

p0
i
Þ � fðxA;u

pi
; xB;v0

p00
i
Þ

FðXA;u;XB;v;Pu;vÞ �FðXA;u;XB;v0 ;Pu;v0 Þ
¼ . . . ;

�
fðxA;u

pi
; xB;v

p0
i
Þ � fðxA;u

pi
; xB;v0

p00
i
Þ�T; . . .h iT

;

where Pu;v ¼ fðpi; p0iÞgi¼1;...;MN are dense correspondence

between patches in matching XA;u and XB;v, Pu;v0 ¼
fðpi; p00i Þgi¼1;...;MN are dense correspondence between

patches in matching XA;u and XB;v0 , and the saliency match-
ing feature is defined in Eq. (22). Thus, we have the fifth

term in subtraction DfðxA;upi
; xB;v

p0
i
; xB;v

0
p00
i
Þ;

Df5ðxA;upi
; xB;v

p0
i
; xB;v

0
p00
i
Þ ¼ pðlA;upi

¼ 1jxA;u
pi

Þ � pðlB;v
p0
i

¼ 1jxB;v
p0
i
Þ

� pðlA;upi
¼ 1jxA;upi

Þ � pðlB;v0
p00
i

¼ 1jxB;v0
p00
i
Þ;

and the sixth term

Df6ðxA;upi
; xB;v

p0
i
; xB;v

0
p00
i
Þ ¼ pðlA;upi

¼ 1jxA;u
pi

Þ � pðlB;v
p0
i

¼ 0jxB;v
p0
i
Þ

� pðlA;upi
¼ 1jxA;u

pi
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p00
i
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i
Þ
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Þ �
h
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i
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i
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i
Þ
i
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pi
Þ � pðlB;v
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i
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p0
i
Þ
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pi
Þ � pðlB;v0

p00
i
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p00
i
Þ

¼ �Df5ðxA;upi
; xB;v

p0
i
; xB;v

0
p00
i
Þ:

We find the Df5 and Df6 are of the same value but opposite
signs, and they are the actual features used in Structural
SVM training. Weights bpi;1

and bpi;2
correspond to the Df5

and Df6 in Cpo. That is the reason that the normalized

weights in Fig. 11 are identical in the fifth and sixth terms,
but please note that they are of opposite signs.

Implementation settings. We use the Matlab interface of

SVMstruct [46], [72] to implement the structural RankSVM.
All experiments are performed in Matlab 2012b on Win-
dows x64 with 3:33 GHz Intel Xeon CPU, and 48 GB RAM.
We show the value settings for all the parameters in our
approach in Table 2. These parameters are chosen empiri-
cally. Most of them were chosen with reasonable values
without being carefully tuned. For example, s0 and ssdc are
set as 1. ak ¼ 0:5 and k is decided by ak 	Nr, where Nr is
the size of the reference set in Eq. (9). So k is simply chosen
as half of the reference set siz e. s is set to the average of
patch disances in the training set. In One-class SVM
(Eq. (11)), c is automatically learned. These parameters are
kept the same across datasets.
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